Passage of Wolbachia pipientis through mutant drosophila melanogaster induces phenotypic and genomic changes.

نویسندگان

  • Irene L G Newton
  • Kathy B Sheehan
چکیده

Wolbachia pipientis is a nearly ubiquitous, maternally transmitted bacterium that infects the germ line of insect hosts. Estimates are that Wolbachia infects 40 to 60% of insect species on the planet, making it one of the most prevalent infections on Earth. However, we know surprisingly little about the molecular mechanisms used by Wolbachia to infect its hosts. We passaged Wolbachia through normally restrictive Drosophila melanogaster hosts, bottlenecking Wolbachia through stochastic segregation while simultaneously selecting for mutants that could recolonize these previously restrictive hosts. Here, we show that Wolbachia alters its behavior when passaged through heterozygous mutant flies. After only three generations, Wolbachia was able to colonize the previously restrictive hosts at control titers. Additionally, the Wolbachia organisms passaged through heterozygous mutant D. melanogaster alter their pattern of tissue-specific Wsp protein production, suggesting a behavioral response to the host genotype. Using whole-genome resequencing, we identified the mutations accumulated by these lineages of Wolbachia and confirmed the existence and persistence of the mutations through clone library Sanger sequencing. Our results suggest that Wolbachia can quickly adapt to new host contexts, with genomic mutants arising after only two generations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Native Wolbachia Endosymbionts of Drosophila melanogaster and Culex quinquefasciatus Increase Host Resistance to West Nile Virus Infection

BACKGROUND The bacterial endosymbiont Wolbachia pipientis has been shown to increase host resistance to viral infection in native Drosophila hosts and in the normally Wolbachia-free heterologous host Aedes aegypti when infected by Wolbachia from Drosophila melanogaster or Aedes albopictus. Wolbachia infection has not yet been demonstrated to increase viral resistance in a native Wolbachia-mosqu...

متن کامل

The relative importance of DNA methylation and Dnmt2-mediated epigenetic regulation on Wolbachia densities and cytoplasmic incompatibility

Wolbachia pipientis is a worldwide bacterial parasite of arthropods that infects germline cells and manipulates host reproduction to increase the ratio of infected females, the transmitting sex of the bacteria. The most common reproductive manipulation, cytoplasmic incompatibility (CI), is expressed as embryonic death in crosses between infected males and uninfected females. Specifically, Wolba...

متن کامل

No Effect of Wolbachia on Resistance to Intracellular Infection by Pathogenic Bacteria in Drosophila melanogaster

Multiple studies have shown that infection with the endosymbiotic bacterium Wolbachia pipientis confers Drosophila melanogaster and other insects with resistance to infection by RNA viruses. Studies investigating whether Wolbachia infection induces the immune system or confers protection against secondary bacterial infection have not shown any effect. These studies, however, have emphasized res...

متن کامل

The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans.

The obligate intracellular bacterium Wolbachia pipientis infects around 20% of all insect species. It is maternally inherited and induces reproductive alterations of insect populations by male killing, feminization, parthenogenesis, or cytoplasmic incompatibility. Here, we present the 1,445,873-bp genome of W. pipientis strain wRi that induces very strong cytoplasmic incompatibility in its natu...

متن کامل

The endosymbiont Wolbachia increases insulin/IGF-like signalling in Drosophila

Insulin/IGF-like signalling (IIS) is an evolutionarily conserved pathway that has diverse functions in multi-cellular organisms. Mutations that reduce IIS can have pleiotropic effects on growth, development, metabolic homeostasis, fecundity, stress resistance and lifespan. IIS is also modified by extrinsic factors. For instance, in the fruitfly Drosophila melanogaster, both nutrition and stress...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 81 3  شماره 

صفحات  -

تاریخ انتشار 2015